
陈俊仕
cjuns@ustc.edu.cn

2023 Fall

计算机科学与技术学院
School of Computer Science and Technology

计算系统概论A
Introduction to Computing Systems

（CS1002A.03)

Chapter 7     
Assembly Language Program



Review1

Assembly Language Overview2

Assembly Process3

Summary4

Outline



Review: The Transistor & Basic Logical Structure

2023/11/17 3



Review: Von Neumann Model

MEMORY

CONTROL UNIT

MAR MDR

IR

PROCESSING UNIT

ALU TEMP

PC

OUTPUT
Monitor
Printer
LED
Disk

INPUT
Keyboard
Mouse
Scanner
Disk



2023/11/17 5

Review: Von Neumann Model

nSo far, we’ve learned how to:

lcompute with values in registers

lload data from memory to registers

lstore data from registers to memory
MEMORY

CONTROL UNIT

MAR MDR

IR

PROCESSING UNIT

ALU TEMP

PC

OUTPUT
Monitor
Printer
LED
Disk

INPUT
Keyboard
Mouse
Scanner
Disk



Review: The ISA

2023/11/17 6



Review: The State Machine(Turing Machine equivalent)

EA

OP

EX

S

F

D

2023/11/17 7



Review: The Data Path(von Neumann Model)

2023/11/17 8



Exercise

2023/11/17 9



Exercise

2023/11/17 10



Exercise

2023/11/17 11



Review1

Assembly Language Overview2

Assembly Process3

Summary4

Outline



A LC-3 Program

2023/11/17 13

0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0

0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0

1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1
0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1
0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1

0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1

0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1

0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1

1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

X4101

X4102

X4103
X4104

X4105

X4106

X4107
X4108

X4109

X410A

X410B
X410C

X410D

X410E

X410F
X4110

X4101

X4102

X4103
X4104

X8001

X8002

X8003
X8004

X8005

X8006

X8007
X8008

X8009

X800A

X800B
X800C

X800D

X800E

X800F
X8010

X8011

X8012

X8013
X8014

X8015

X8016

X8017

X8018



2023/11/17 14

Human-Readable Machine Language

nComputers like ones and zeros…

nHumans like symbols…

nAssembler is a program that turns symbols into machine instructions.

lISA-specific: close correspondence between symbols and instruction 

set

— mnemonics for opcodes

— labels for memory locations

ladditional operations for allocating storage and initializing data

ADD R6,R2,R6 ; increment index reg.
or
C = a + b;

0001110010000110



Great Idea #4: Software and Hardware Co-design

Software
Hardware

Application

Language

Machine Architecture, ISA 

Microarchitecture

Logic and IC

Device

Algorithm & Data Structure

2023/11/17 15

Computer System: Layers of Abstraction

Now, You 
are Here.



Great Idea #3: Abstraction Helps Us Manage Complexity

2023/11/17 16

Solve a system of equations

Gaussian 
elimination

Jacobi
iterationRed-black SOR Multigrid

FORTRAN C C++ Java

Intel x86Sun SPARC IBM PowerPC

Pentium 4 Core 2 Duo AMD Athlon X2

Ripple-carry adder Carry-lookahead adder

Static CMOS Dynamic CMOS Nanomechanical

Algorithm and Data Structure

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Electronic Devices

Programming Language/Compiler

Analog/Digital Circuits

Physics



2023/11/17 17

An Assembly Language Program

01 ;
02 ; Program to multiply a number by the constant 6
03 ;
04        .ORIG  x3050
05        LD R1, SIX
06        LD     R2, NUMBER
07        AND    R3, R3, #0  ; Clear R3.  It will
08                           ; contain the product.
09 ; The inner loop
0A ;
0B AGAIN  ADD    R3, R3, R2
0C        ADD    R1, R1, #-1 ; R1 keeps track of
0D        BRp AGAIN       ; the iteration.
0E ;
0F        HALT
10 ;
11 NUMBER .BLKW  1
12 SIX    .FILL  x0006
13 ;

.END



2023/11/17 18

LC-3 Assembly Language Syntax

nEach line of a program is one of the following:

lan instruction

lan assembler directive (or pseudo-op)

la comment

nWhitespace (between symbols) and case are ignored.

nComments (beginning with “;”) are also ignored.

nAn instruction has the following format:
LABEL OPCODE OPERANDS COMMENTS

optional mandatory



2023/11/17 19

Opcodes and Operands

nOpcodes
l reserved symbols that correspond to LC-3 instructions

l listed in Appendix A

— ex: ADD, AND, LD, LDR, …

nOperands
l registers -- specified by Rn, where n is the register number

l numbers -- indicated by # (decimal) or x (hex) or b (binary)

l label -- symbolic name of memory location

l separated by comma

l number, order, and type correspond to instruction format

—ex: ADD R1,R1,R3

ADD R1,R1,#3

LD R6,NUMBER

BRz LOOP



2023/11/17 20

Labels and Comments

nLabel
lplaced at the beginning of the line

lassigns a symbolic name to the address corresponding to line
—ex:

LOOP ADD R1,R1,#-1

BRp LOOP

nComment
lanything after a semicolon is a comment

lignored by assembler

lused by humans to document/understand programs

ltips for useful comments:
— avoid restating the obvious, as “decrement R1”
— provide additional insight, as in “accumulate product in R6”
— use comments to separate pieces of program



2023/11/17 21

Assembler Directives

nPseudo-operations

ldo not refer to operations executed by program

lused by assembler

llook like instruction, but “opcode” starts with dot

Opcode Operand Meaning

.ORIG address starting address of program

.END end of program

.BLKW n allocate n words of storage

.FILL value allocate one word, initialize with a 
value 

.STRINGZ n-character 
string

allocate n+1 locations, 
initialize w/characters and null 
terminator



Example

2023/11/17 22

.ORIG   X3010

HELLO  .STRINGZ ‘’Hello, World!‘’

x3010: x0048
x3011: x0065
x3012: x006C
x3013: x006C
x3014: x006F
x3015: x002C
x3016: x0020
x3017: x0057
x3018: x006F
x3019: x0072
x301A: x006C
x301B: x0064
x301C: x0021
x301D: x0000 



2023/11/17 23

Trap Codes

nLC-3 assembler provides “pseudo-instructions” for each trap code, so you don’t 

have to remember them.

Code Equivalent Description
HALT TRAP x25 Halt execution and print message to 

console.
IN TRAP x23 Print prompt on console,

read (and echo) one character from keybd.
Character stored in R0[7:0].

OUT TRAP x21 Write one character (in R0[7:0]) to console.
GETC TRAP x20 Read one character from keyboard.

Character stored in R0[7:0].
PUTS TRAP x22 Write null-terminated string to console.

Address of string is in R0.



2023/11/17 24

Style Guidelines

nUse the following style guidelines to improve the readability and understandability of 
your programs:
1.Provide a program header, with author’s name, date, etc., and purpose 

of program. 

2.Start labels, opcode, operands, and comments in same column for each 

line.  (Unless entire line is a comment.)

3.Use comments to explain what each register does.

4.Give explanatory comment for most instructions.

5.Use meaningful symbolic names.
• Mixed upper and lower case for readability.
• ASCIItoBinary, InputRoutine, SaveR1

6.Provide comments between program sections.

7.Each line must fit on the page -- no wraparound or truncations.
• Long statements split in aesthetically pleasing manner.



2023/11/17 25

Sample Program

nRemember this?

lCount the occurrences of a character in a file.

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char
from keybd

(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to
ASCII character

(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES



Program (1 of 2)

Address Instruction Comments

x3000 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 ¬ 0 (counter)
AND R2,R2, #0

x3001 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 R3 ¬ M[x3012] (ptr)
LD R3, x3012       (LD R3, PTR)

x3002 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 Input to R0 (TRAP x23)
TRAP x23            (GETC)

x3003 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 ¬ M[R3]
LDR R1, R3, #0

x3004 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 R4 ¬ R1 – 4 (EOT)
ADD R4,R1, #-4

x3005 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 If Z, goto x300E
BRz x300E        (BRz OUTPUT)

x3006 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 R1 ¬ NOT R1
NOT R1,R1

x3007 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 R1 ¬ R1 + 1
ADD R1,R1,#1

X3008 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 R1 ¬ R1 + R0
ADD R1,R1,R0

x3009 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1
If N or P, goto x300B
BRnp x300B   (BRnp

GETCHAR)



Program (2 of 2)

Address Instruction Comments

x300A 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 R2 ¬ R2 + 1 
ADD R2,R2,#1

x300B 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1 R3 ¬ R3 + 1
ADD R3,R3,#1

x300C 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 R1 ¬ M[R3]
LDR R1,R3,#0

x300D 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 Goto x3004
BRnzp x3004     (BRnzp TEST)

x300E 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0          R0 ¬ M[x3013]
LD R0,x3013     ( LD R0, ASCII)

x300F 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 R0 ¬ R0 + R2
ADD R0,R0,R2

x3010 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 Print R0
TRAP x21      (OUT)

x3011 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 HALT
TRAP x25      (HALT)

X3012 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Starting Address of File         
(X9000)

x3013 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 ASCII x30 (‘0’)



2023/11/17 28

Char Count in Assembly Language (1 of 3)

01 ;
02 ; Program to count occurrences of a character in a file.
03 ; Character to be input from the keyboard.
04 ; Result to be displayed on the monitor.
05 ; Program only works if no more than 9 occurrences are          
06 ; found.
07 ;
08 ; Initialization
09 ;
0A .ORIG x3000
0B AND R2, R2, #0 ; R2 is counter, initially 0
0C LD R3, PTR ; R3 is pointer to characters
0D GETC ; TRAP x23
0E ; R0 gets character input
0F LDR R1, R3, #0 ; R1 gets first character
10 ;
11 ; Test character for end of file
12 ;
13
14 TEST ADD R4, R1, #-4    ; Test for EOT(ASCII x04)
15 BRz OUTPUT ; If done, prepare the output



2023/11/17 29

Char Count in Assembly Language (2 of 3)

16 ;
17 ; Test character for match.  If a match, increment count.
18 ;
19 NOT R1, R1
1A ADD R1, R1, #1 ; R1 <-- -R1
1B ADD R1, R1, R0 ; R1 <-- R0 – R1. if R1=0, a match!
1C BRnp GETCHAR ; If no match, do not increment
1D ADD R2, R2, #1
1E ;
1F ; Get next character from file.
20 ;
21 GETCHAR ADD R3, R3, #1 ; Point to next character.
22 LDR R1, R3, #0 ; R1 gets next char to test
23 BRnzp TEST
24 ;
25 ; Output the count.
26 ;
27  OUTPUT LD R0, ASCII ; Load the ASCII template
28 ADD R0, R0, R2 ; Covert binary count to ASCII
29 OUT ; TRAP x21
2A ; ASCII code in R0 is displayed.
2B HALT ; TRAP x25, Halt machine



2023/11/17 30

Char Count in Assembly Language (3 of 3)

2C ;
2D ; Storage for pointer and ASCII template
2E ;
2F ASCII .FILL x0030 ; ASCII code of number ‘0’
30 PTR .FILL x9000 ; pointer to the first character
31 .END



Review1

Assembly Language Overview2

Assembly Process3

Summary4

Outline



2023/11/17 32

Assembly Process

nConvert assembly language file (.asm) into an executable file (.obj) for the LC-3 simulator.

nFirst Pass:

lscan program file

lfind all labels and calculate the corresponding addresses;

this is called the symbol table

nSecond Pass:

lconvert instructions to machine language, using information from symbol 

table



2023/11/17 33

First Pass: Constructing the Symbol Table

1. Find the .ORIG statement, which tells us the address of the first instruction.

• Initialize location counter (LC), which keeps track of the

current instruction.

2. For each non-empty line in the program:

a) If line contains a label, add label and LC to symbol table.

b) Increment LC.

– NOTE: If statement is .BLKW or .STRINGZ,

increment LC by the number of words allocated.

3. Stop when .END statement is reached.

n NOTE: A line that contains only a comment is considered an empty line.



2023/11/17 34

Practice

nConstruct the symbol table for the program in Figure 7.2

; Initialization
;

.ORIG   x3000
AND     R2,R2,#0
LD      R3,PTR
TRAP    x23
LDR.    R1,R3,#0

;
; Test char. For end of file
;
TEST    ADD     R4,R1,#-4

BRz OUTPUT
;
; Test char. For match.
;

NOT     R1,R1
ADD     R1,R1,#1
ADD     R1,R1,R0
BRnp GETCHAR
ADD     R2,R2,#1

;
; Get next char. from the file
;
GETCHAR ADD     R3,R3,#1

LDR     R1,R3,#0
BRnp TEST

;
; Output the count
;
OUTPUT  LD      R0,ASCII

ADD     R0,R0,R2
TRAP    x21
TRAP    x25

;
; Storage for pointer and ASCII temp.
;
ASCII   .FILL   x0030
PTR     .FILL   x4000

.END



2023/11/17 35

Practice

nConstruct the symbol table for the program in Figure 7.2 

Symbol Address
TEST X3004

GETCHAR X300B

OUTPUT X300E

ASCII X3012

PTR X3013



2023/11/17 36

Second Pass: Generating Machine Language

nFor each executable assembly language statement, generate the corresponding machine 

language instruction.

lIf operand is a label, look up the address from the symbol table.

nPotential problems:

lImproper number or type of arguments
— ex: NOT R1,#7

ADD R1,R2

ADD R3,R3,NUMBER

lImmediate argument too large

— ex: ADD R1,R2,#1023

lAddress (associated with label) not on the same page
— can’t use direct addressing mode



2023/11/17 37

Practice

Statement Machine Language
LD   R3,PTR

ADD  R4,R1,#-4

LDR  R1,R3,#0

BRnp GETCHAR

nUsing the symbol table constructed earlier, translate these statements into LC-3 

machine language.

n (Assume all addresses are on the current page.)



2023/11/17 38

LC-3 Assembler

nUsing “assemble” (Unix) or LC3 Edit (Windows),

generates several different output files.

This one gets
loaded into the
simulator.



2023/11/17 39

Object File Format

nLC-3 object file contains

lStarting address (location where program must be loaded),followed 

by…

lMachine instructions

nExample

lBeginning of “count character” object file looks like this:
0011000000000000
0101010010100000
0010011000010100
1111000000100011

.

.

.

.ORIG x3000

AND R2, R2, #0

LD R3, PTR

TRAP x23



2023/11/17 40

Multiple Object Files

nAn object file is not necessarily a complete program.

lsystem-provided library routines

lcode blocks written by multiple developers

nFor LC-3, can load multiple object files into memory, then start executing at a 

desired address.

lsystem routines, such as keyboard input, are loaded automatically

— loaded into “system memory,” below x1000

— by convention, user code should be loaded between x3000 and xCFFF

leach object file includes a starting address

lbe careful not to load overlapping object files



2023/11/17 41

Linking and Loading

nLoading is the process of copying an executable image into memory.

lmore sophisticated loaders are able to relocate images to fit into 

available memory

lmust readjust branch targets, load/store addresses

nLinking is the process of resolving symbols between independent object files.

lsuppose we define a symbol in one module, and want to use it in 

another

lsome notation, such as .EXTERNAL, is used to tell assembler that a 

symbol is defined in another module

llinker will search symbol tables of other modules to resolve symbols 

and complete code generation before loading



2023/11/17 42

Linking and Loading



Review1

Assembly Language Overview2

Assembly Process3

Summary4

Outline



lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

High Level Language
Program (e.g., C)

Assembly  Language 
Program (e.g., MIPS)

Machine  Language 
Program (MIPS)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine 
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110 
1100 0110 1010 1111 0101 1000 0000 1001 
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture 
Implementation

Anything can be represented
as a number, 

i.e., data or instructions

Summary: Assembly Language

Now, You 
are Here.

ALUOP[0:3] <= InstReg[9:11] & MASK



Memory map of the LC-3

PC

R4(Global pointer)

R6 (stack pointer)

Device Register 
Addresses

0x0000

0xFFFF

Trap Vector Table

Interrupt Vector Table

Operating System 
and Supervisor Stack

0x00FF
0x0100

0x01FF
0x0200

0x2FFF
0x3000

0xFDFF
0xFE00

Run-time stack

Program Text

Global data section

Heap (for dynamically 
allocated memory)

R5 (frame pointer)

R5 
Function2

R6 
R5 

R6 

Function3

Function1

R5 

R6 

2023/11/17 45

Memory

l address space: 216

locations(16-bit addresses)

l addressability: 16 bits



2023/11/17 46


